
In automotive, fuel economy improvement is of highest 
priority. High performance plastics are an important 
enabler in making cost effective progress. To maximise 
the potential benefits that materials can bring, a deep 
understanding of the application is essential. 
In this paper we demonstrate how plastics can help to 
reduce friction in the timing chain system. 

Friction reduction in engines
In modern engines, as much as 25% of the work available at the 
pistons is lost in internal friction in the engine. Obviously there is 
much focus on reducing these parasitic losses. DSM’s products are 
facilitating such improvements. 

A very specific contribution in friction reduction has been realised in 
the timing chain system. Working in close collaboration with OEMs 
and Tiers DSM has been able to demonstrate that by changing the 
wear surfaces of the guides and tensioners from PA66 to Stanyl® 
PA46, the friction torque of the chain drive system can be reduced by 
as much as 4 to 15%. 

Obviously the extent of improvement that can be achieved per 
engine depends on the layout of the timing chain system. 
To enable a quick assessment of those benefits, we have developed 
a calculation tool that is also accessible from the web [see www.
tcfrc.stanyl.com]. The calculation provides an elegant breakdown 
of the contributions to the overall friction in the chain system. The 
majority of friction arises from contact between the chain and the 
plastic wear faces as is illustrated in figure 1. 
 

Figure 1. A timing chain 
layout with parasitic loss 
contributions due to sliding 
friction and chain articulation.

There is fairly general 
consensus that the 
friction between chain 
and wear face occurs in 
the mixed or boundary 
regime. 

Detailed analyses on test 
engines have shown that 
the typical Stribek curve 
response is due to the 

journal bearings on the camshafts and crankshaft plus the contact 
between the tappets and the cam lobes. The remaining contribution, 
due to chain on plastic, is not really speed dependant. 

Lowering friction with Stanyl® 
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Moreover it has been shown that with increasing oil viscosity, the 
chain-on-plastic friction reduces, which is consistent with mixed 
or boundary lubrication. Also our idealised, more fundamental 
assessment of hydrodynamic lift as function of speed, oil viscosity, 
surface roughness and guide radius, reveals that even for fairly 
straight guides, the hydrodynamic lift is insufficient to establish an 
intact oil film at realistic chain tension. This is illustrated in figure 2. 
It is essential, because only in mixed or boundary lubrication a direct 
contact between metal and plastic occurs and thus the plastic type 
can affect the level of friction.

Figure 2. Lubrication regimes for chain-on-guide. Boundary lubrication 
occurs when the chain force is above the drawn curves.

At DSM the in-engine friction conditions were mimicked as closely as 
possible on a thrustwasher type Tribometer. The coefficient of friction 
(CoF) of several materials was measured in engine oil, figure 3. 
These measurements confirm a 20 - 30% lower CoF of PA46 (Stanyl 
TW341) versus PA66 grades commercially used in chain tensioners 
and guides. Even a more exotic friction-optimised PA66 based 
material recently introduced in the market does not show a lower CoF 
than Stanyl in our test. 

 Figure 3. Graph comparing CoF of several materials versus temperature.

The main differences in tribological behaviour between PA66 and 
PA46 find their origin in the intrinsic mechanical properties. 
The modulus of a material at the in-use temperature is a key 

indicator since it measures the resistance against small scale 
deformations. Since Stanyl has a higher crystallinity, the modulus 
above the glass transition is some 30 - 40% higher as can be seen 
in figure 4. This means that the metal asperities (peaks on the 
surface roughness) cannot penetrate as deeply into the Stanyl 
as they can into the PA66. This smaller interaction explains the 
observed lower friction. The higher crystallinity also provides the 
basis for the observed better wear resistance.

 Figure 4. Modulus versus temperature of PA66 and PA46.

Figure 4 also illustrates how Stanyl is better able to cope with higher 
PV systems (i.e. hotter chains). For the sake of argument, let us 
assume that 140°C is the absolute maximum chain temperature that 
PA66 chain guide can sustain. The red horizontal line in fig. 4 then 
indicates the level of modulus at the friction interface with the timing 
chain. This same level of modulus can be provided by a PA46 wear 
face at roughly 210°C. Taking the oil sump temperature of 90°C as 
the heat sink temperature, timing chains with PA66 guides can only 
accommodate chains that are 50°C hotter than the oil. Stanyl guides 
however can sustain chains which are about 120°C hotter than the 
oil. This is over a factor 2 larger delta T as PA66.

As illustrated in figure 1, the amount of energy lost in friction can 
easily be several 100 Watts. All this heat is liberated in the chain and 
causes the chain to heat up. It is possible to estimate the nominal 
chain temperature from the cooling capacity due to convection to 
air, oil and conduction to the sprockets. We have validated these 
calculations experimentally using IR Pyrometry and confirmed that 
the average chain temperature can easily be some 30 - 40°C above 
the oil sump temperature. 

Our detailed dynamic 3D thermal modelling is illustrated in figure 5. 
It takes into account the pulsed heating of a chain element due to 
chain articulation and sliding friction as well as pulsed cooling due 
to oil jets that are lubricating the chain. Results reveal that there is 
a significant local overheating at the sliding contact area. The high 
thermal conductivity in the metal chain is insufficient to even out the 
local heating and cooling pulses. In extreme cases, this can lead to 
overheating and melting of the plastic in the contact area.
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The low thermal conductivity of plastics makes it difficult to 
measure such local high temperatures. One option is to include a 
thermocouple wire in the plastic, close to the surface. 

Figure 5. 3D dynamic thermal modelling reveals considerable local 
overheating at the chain to guide contact.

The inclusion of a highly thermally conductive thermocouple wire 
in the plastic body will, however, lead to significant deformation of 
the temperature profile as shown in figure 6. It is therefore possible 
to see melting at the plastic surface, while the thermocouple only 
indicates 150°. Although accurate absolute measurements are 
difficult, one can observe a 5 -10°C lower plastic temperature in 
Stanyl guides compared to PA66 under similar conditions. This again 
confirms the lower friction of Stanyl PA46.

Figure 6. 3D dynamic thermal modelling reveals how the temperature 
profile in a plastic is distorted by introducing a thermocouple.

Conclusion: 
DSM is collaborating with a growing number of global OEMs and 
all Tier1s to validate the friction benefit that Stanyl can bring in 
timing systems. Over a dozen engines on motored test stands have 
confirmed a significant friction benefit anywhere between 0.1 and 
0.5 Nm friction torque reduction. The corresponding fuel economy 
improvement has been measured and confirmed in fired engine tests 
[Hyundai/BorgWarner, SAE International 2012-01-1752, published 
09/10/2012]. Changing the wear faces that are in contact with the 
chain from standard PA66 to Stanyl PA46 is recognised to be the 
most cost effective way to improve fuel economy in engines. Since 
Stanyl is known for its superior wear resistance, the friction benefits 
come at zero risk of any change or re-approval costs, such as would 
be required for new materials. It simply contributes to building the 
most robust timing chain systems.

In order to be an innovation leader and to successfully participate 
as a development partner in the plastics industry, DSM is convinced 
that it is essential to develop a deep insight into the application 
fields of its key market segments. The company will continue to 
creatively combine application know-how with expertise in Tribology 
and Materials Science and extend our materials portfolio. 
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